
2 

 

Processing English compounds: Investigating semantic transparency 
 

Christina L. Gagné, & Thomas L. Spalding 

Department of Psychology, University of Alberta, Canada 

Kelly A. Nisbet 

Western University, Canada 

 

 
Semantic transparency is widely believed to affect the processing of compound words. It 

has been described as the degree to which the meaning of the constituent is retained in 

the meaning of the whole compound, but also as the degree to which the meaning of the 

compound is predictable from the meaning of the constituents. Furthermore, semantic 

transparency has been operationalized in various ways (e.g., Libben 2010; Libben et al. 

2003; Sandra 1990). We describe a study in which transparency was measured based on: 

1) linguistic criteria used by informed judges, 2) participant ratings of a) how predictable 

a compound’s meaning was from its parts, and b) the extent that each constituent retains 

its meaning in the compound, 3) Latent Semantic Analysis (LSA; Landauer & Dumais 

1997) scores for the compound and each constituent. We used these measures to test the 

claim that meaning retention ratings reflect the semantic similarity between a 

compound’s meaning and the constituent meaning, whereas the predictability ratings 

indicate the degree of semantic compositionality of the compound’s concept (see Marelli 

& Luzzatti 2012). We did not find support for these specific conceptualizations of 

semantic transparency. We then investigated the relationships among these different 

measures of semantic transparency to determine whether they reflect the same underlying 

construct, and in particular, the extent to which the LSA scores and participant ratings 

can predict the classification by informed judges using linguistic criteria. Finally, we 

used the various measures to predict typing times (a measure of processing) of compound 

words. The results from these various analyses indicate that the various methods of 

measuring semantic transparency do not reflect the same underlying aspects of semantic 

transparency. 
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1. Introduction 

 

There is ongoing debate in psycholinguistic research about whether morphologically complex 

words are represented and processed in terms of their morphemes (for an overview of the key 

issues in linguistic research on compounding, see Lieber & Štekauer 2009 and Scalise & Vogel 

2005). Theories have spanned the entire range of possibilities. Some theories propose that each 

word has an independent representation and that words are accessed via these whole-word 

representations (e.g., Bradley 1980, Butterworth 1983, Manelis & Tharp 1977) and others have 

taken the opposite stance and argue that words are accessed via their morphological constituents 

(e.g., Taft 1985). Still others (e.g., Chialant & Caramazza 1995, Frauenfelder & Schreuder 1991) 
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take a position midway between these two endpoints. In terms of the debate concerning 

compound words, the issue of semantic transparency is particularly relevant because some 

theories have proposed that whether words are represented and processed in terms of their 

morphemes depends on whether the constituents are semantically transparent. Semantic 

transparency refers to the extent to which the meaning of the compound can be derived from the 

constituents, as well as to the extent to which the meanings of the constituents are related to the 

meaning of the compound (see Libben 1998).  

 In this paper, we begin by providing an overview of findings demonstrating that semantic 

transparency influences ease of processing and discussing ways in which theories have 

accounted for the role of semantic transparency. Then, we describe three ways in which this 

construct has been measured. Finally, we present a series of analyses in which we examine how 

well the various methods of measuring semantic transparency predict each other and how well 

the measures of semantic transparency predict ease of processing in a typing task.  

 

1.1. Empirical evidence for semantic transparency  

 

Previous research has indicated that semantic transparency influences the ease with which 

compound words can be processed. For example, lexical decision latencies are longer for 

compounds with opaque heads than for transparent compounds (e.g., Ji, Gagné, & Spalding 

2011, Libben, Gibson, Yoon, & Sandra 2003). In addition, manipulations that aid morphological 

decomposition (such as having the two constituents in different colours or separated by a space) 

slowed the processing of opaque compounds but did not affect the processing of transparent 

compounds (Ji et al. 2011).  

 Other evidence for the influence of semantic transparency comes from priming 

experiments. In a priming experiment, the experimenter manipulates which of several primes is 

presented prior to a target word and examines whether the processing of the target is 

differentially affected by the primes. Past research has found that whether the processing of a 

compound is influenced by a prior exposure to a word that is semantically related to one of the 

constituents depends on semantic transparency. Sandra (1990) found that transparent compounds 

benefited from prior exposure to a semantically related prime (e.g, milkman was aided by 

exposure to workman), but that opaque compounds did not (e.g, butterfly was not aided by 

exposure to the word bread). Similarly, Zwitserlood (1994) did not find evidence of semantic 

priming for fully opaque compounds. These results suggest that transparency of the individual 

constituents influences ease of processing. More recent evidence has suggested that the ease of 

processing a compound is influenced not only by the opacity of the constituents but also by 

whether the constituents have similar semantic transparency; El-Bialy, Gagné and Spalding 

(2013) found that a semantically related prime (e.g., ear as a prime for eyetooth and eyesight) 

facilitated processing when the transparency of the first and second constituents matched (i.e., 

when both were transparent or when both were opaque) but not when the transparency of the 

constituents differed (i.e., for partially opaque compounds).  

 Research examining written production has also found influences of semantic 

transparency. One way of measuring written production is by recording typing latencies for each 

letter of a compound as participants type the word using a computer keyboard. Libben and 
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Weber (2014, see also Sahel, Nottbusch, Grimm, & Weingarten 2008) found that the typing 

latencies are longer for the letter after the morpheme boundary than for the letter prior to the 

morpheme boundary. Importantly, this delay was smaller for opaque-opaque (OO) compounds 

than for transparent-transparent (TT) and opaque-transparent (OT) compounds. That is, fully 

opaque compounds showed a smaller boundary effect than did compounds with transparent head 

nouns. Gagné & Spalding (2014a) found that production was more difficult for compounds with 

opaque first constituents; it took longer to type the first letter of the word for compounds with an 

opaque first constituent than for compounds with a transparent first constituent. In addition, a 

prime word that was semantically related to the first constituent of the target compound aided the 

production of the compound when the head of the compound was transparent but not when the 

head was opaque (Gagné & Spalding 2014d).  

 In sum, evidence for the role of semantic transparency during the processing of 

compound words has come from both comprehension and production tasks.  

 

1.2. Semantic transparency in theoretical accounts of compound word processing 

 

Theories have taken two primary approaches in terms of incorporating semantic transparency 

(for an overview, see Gagné & Spalding 2009). Some have built the distinction into the 

architecture of the system whereas others account for semantic transparency in terms of 

processing. 

 For the first approach, the influence of semantic transparency is described in terms of 

whether the meaning of the constituent is able to influence the activation of the compound’s 

representation. For example, in the theoretical approaches proposed by Libben (1998), Sandra 

(1990), and Zwitserlood (1994) compounds are represented as morphologically complex at the 

lexical level and, consequently, during processing can be decomposed into the constituent 

morphemes. Thus, blue and berry are available during the processing of the transparent 

compound blueberry, and, likewise, straw and berry are available during the processing of the 

partially opaque compound strawberry. The difference between transparent and opaque 

compounds is explained in terms of the links between the constituent and compound at the 

semantic levels. Zwitserlood (1994) proposed that at the semantic level opaque compounds 

behave as monomorphemic words. That is, at the semantic level, an opaque compound has a 

single semantic representation that is not linked with the semantic representations of its 

constituents, whereas fully- and partially-transparent compounds have their own semantic 

representations that are linked to the semantic representations of their components (see 

Schriefers, Zwitserlood, & Roelofs 1991, for a similar approach). Thus, by this view, blue is 

linked to blueberry at the conceptual level, but straw is not linked to strawberry at the 

conceptual level. Libben (1998; see also Libben et al. 2003) also explains transparency in terms 

of links among semantic representations. However, in his theory, opaque constituents are 

connected via inhibitory links to the compound rather than, as in the case of Zwitserlood’s 

approach, being unconnected.  

 In each of these approaches, priming with words that are semantically related to a 

constituent should result in faster processing for the compound when the constituent is 

semantically transparent but not when the constituent is opaque. That is, the presence or absence 
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of links between the constituent and the compound’s semantic representations accounts for the 

finding that transparent compounds but not opaque compounds benefited from exposure to a 

prime that was semantically related to one of the constituents. According to these theoretical 

approaches, exposure to a semantically related prime also activates the constituent due to 

spreading activation to semantically related words, which then boosts the activation of the 

compound due to the link between the semantic representations of the constituent and the 

compound for semantically transparent constituents. To illustrate, accessing the word woman 

also activates man due to a facilitatory connection between the semantic representations for these 

two words. Because man is linked to milkman, the compound’s semantic and lexical 

representations also become more activated. In contrast, the lack of a facilitatory link between an 

opaque constituent and the compound does not allow the activation of the constituent’s semantic 

representation to increase the activation of the compound’s semantic representation and, thus, no 

benefit from the semantically related prime is observed for opaque compounds.  

 For the second theoretical approach, semantic transparency is not represented in the 

architecture but rather arises out of the processing. Theoretical perspectives such as the 

Competition-Among-Nominals (CARIN) theory (Gagné & Shoben 1997) and the Relational 

Interpretation Competitive Evaluation (RICE) theory (Spalding, Gagné, Mullaly & Ji, 2010; see 

also Gagné & Spalding 2014b) propose that constituents become available during processing 

regardless of the degree of semantic transparency. This assumption is consistent with Libben’s 

(2010) maximization of opportunity view. The system then attempts to integrate the constituents 

(e.g, Inhoff, Radach & Heller 2000) using semantic integration (Fiorentino & Poeppel 2007, 

Gagné & Spalding 2004, 2009, Spalding et al. 2010). During the integration process, the system 

attempts to construct a meaning. Previously (e.g., Gagné & Spalding 2004, 2009), we have 

argued that this meaning construction process relies heavily on relation-based conceptual 

structures. Thus, one way in which the influence of semantic transparency emerges is during 

meaning construction processing. The constructed meaning for compounds with opaque 

constituents will be inconsistent with the conventional meaning. For example, a literal 

interpretation of hogwash is “a wash for pigs” which is incompatible with the conventional 

meaning “rubbish or nonsense”. This inconsistency between the meanings needs to be resolved 

and, thus, slows the processing of opaque compounds. However, in the case of compounds with 

transparent constituents, the constructed meaning will typically be similar to or the same as the 

conventional meaning and, thus, should not slow processing. 

 Several findings are compatible with these predictions. For example, opaque compounds 

(e.g., humbug) were responded to more slowly in a lexical decision task than were frequency-

matched transparent compounds (e.g., snowball) and manipulations that aided decomposition, 

such as presenting the constituents in different colours or separated by a space, slowed 

processing of opaque compounds but not of transparent compounds (Ji et al. 2011). Jarema, 

Busson, Nikolova, Tsapkini, and Libben (1999) have also found that responses in a lexical 

decision task are faster for semantically transparent compounds than for semantically opaque 

compounds. 

 This construction-based approach also accounts for the finding that transparent but not 

opaque compounds benefited from exposure to a prime that was semantically related to one of 

the constituents by assuming that both facilitatory and inhibitory processes are occurring during 
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the task. In some cases, such as in the case of opaque compounds, these processes might offset 

each other such that the net effect is that no difference in processing time is observed. For 

example, a semantically related prime might facilitate the activation of a constituent which 

would generally aid the activation of a compound. However, in the case of an opaque compound, 

the increased ease of accessing the opaque constituent might speed the meaning construction 

process which would increase the difficulty of processing the compound due to the increased 

conflict between the constructed and conventional meanings. Accounting for priming in this 

way, rather than via properties of the architecture of the mental lexicon, is more flexible in that it 

can more readily account for adaptation effects that are observed in priming experiments, as 

demonstrated in Gagné & Spalding (2014a). 

 Another finding that supports the claim that morphological decomposition and meaning 

construction occurs during the processing of compound words regardless of semantic 

transparency is that increased relational diversity slowed processing of both opaque and 

transparent compounds (Gagné & Spalding 2014c, 2014d, Schmidtke, Kuperman, Gagné, & 

Spalding 2015). Relational diversity reflects the extent to which the possible interpretations 

concentrate on a small set of relations. High relational diversity reflects a higher degree of 

relation competition than does low relational diversity. 

 

1.3. Operationalizing semantic transparency 

 

As shown in the preceding sections, semantic transparency plays a central role in theories 

concerning compound words and has been shown to influence processing in a variety of 

experimental tasks. However, semantic transparency is a theoretical construct: What is the best 

way of operationalizing this construct? This question is especially relevant given that some 

researchers, such as Libben, Curtiss, and Weber 2014 (see also Libben 2010; Libben & Weber 

2014) have argued that psychocentricity should play a larger role in determining which linguistic 

constructs are valid. By this view, some aspects of a word are properties of the human language 

user, rather than properties of the word itself; according to Libben et al. (2014, p. 1) “Language 

resides in the minds of the individuals” and therefore specific characteristics of words (including 

structural and semantic characteristics) are influenced by individual experience. Therefore, it is 

useful to consider how semantic transparency has been used as a variable in empirical research. 

 In psycholinguistic studies, semantic transparency has been defined and operationalized 

in various ways. Indeed, it has been measured in three primary ways. First, items have been 

classified as transparent or opaque based on informed judgments by the researchers (i.e., 

judgements made by individuals with an expert knowledge of linguistic/psycholinguistic 

theories) using linguistic criteria such as whether the second constituent is the semantic head 

(e.g., Ji et al. 2011; Libben 2010; Libben & Weber 2014; Sandra 1990). Second, transparency 

has been measured by participant ratings (e.g, Fiorentino & Fund-Reznicek 2009; Juhasz, Lai, & 

Woodcock, 2015; Libben et al. 2003; Marelli & Luzzatti 2012). The specific details of the 

ratings have varied in terms of the range of the scale (e.g., a four point scale, Libben et al. 2003, 

or a five point scale, Zwitserlood 1994) and, more importantly, in terms of the way in which 

transparency was defined. The two dominant ways of conceptualizing semantic transparency 

have been to rate the degree to which the meaning of a compound is predictable from the 
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constituents and the degree to which each of the constituents (rated individually) retain their 

meaning in the compound.  

 A third way of measuring transparency is by using latent semantic analysis (LSA), which 

is the degree of association and semantic similarity between the meanings of words based on 

patterns of co-occurrence in similar contexts (e.g., Kuperman 2013; Wang, Hsu, Tien, & Pompiu 

2014). LSA is a technique that estimates the semantic distance between two words based on the 

contexts in which the two words occur in a large corpus (Landauer & Dumais, 1997). The scores 

are cosine values that range from -1 to 1 and larger absolute values indicate greater association 

between the two words. For example, the LSA score for honey and honeycomb is .61 and 

indicates that these two items are more closely associated than are dumb and dumbbell which 

have an LSA score of .05. The LSA scores were obtained from term-to-term LSA scores at 

http://lsa.colorado.edu. 

 

 

2. Current investigation 
 

Although various methods for operationalizing semantic transparency have been used in the 

literature, there has not yet been a systematic exploration of how these methods relate to each 

other. Therefore, the aim of our investigation was to better understand how the three ways of 

measuring semantic transparency relate to each other. In particular, we were interested in 

determining whether they measure the same aspect of semantic transparency. Our second aim 

was to focus on LSA values and human ratings to determine whether they accounted for 

behavioural data in the same way. For this aspect of our investigation, we focused on typing 

latencies from a written production task. 

 

2.1. Dataset 

 

In the current paper, we use the dataset collected by Nisbet, Gagné, and Spalding (2015) which 

used three measures of semantic transparency (linguistic classification, ratings, and LSA scores) 

for 200 compound words and 50 pseudo-compound words. The items were selected such that 

each item had a unique first and second constituent. The compounds were classified into four 

categories based on the semantic transparency of the first and second constituent: transparent-

transparent (e.g., blueberry, N=59), transparent-opaque (e.g., honeycomb, N=53), opaque-

transparent (e.g., chopstick, N=46) and opaque-opaque (e.g,. hogwash, N=42). Pseudo-

compound words were those that orthographically consist of two English morphemes, but in 

which the morphemes do not play any morphemic role (e.g., carpet is not composed of car + pet 

in a morphological sense even though it does contain these two orthographic units). 

 The participant ratings of semantic transparency were collected from 90 participants in a 

two-part study. The items were displayed one at a time on a computer screen in a randomized 

order. In Part One, participants rated “the extent to which the word parts contribute to the overall 

meaning”. Participants indicated their response by manipulating a slide bar that ranged from 0% 

(very unpredictable) to 100% (very predictable) and pressing enter once they placed the marker 

at the desired percentage. In Part Two, participants rated each constituent individually on “the 
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extent to which the word parts retain their meaning in relation to the whole word”. Again, 

participants used a slide bar from 0% to 100%. The descriptive statistics for these ratings are 

provided in Table 1.  

 

Table 1: Mean and range (i.e., minimum to maximum values) in percentages for meaning 

predictability and meaning retention ratings 

Compound Type Predictability Rating Retention Rating for C1 Retention Rating for C2 

TT 79 (51 to 93) 78 (34 to 93) 79 (41 to 93) 

OT 60 (36 to 81) 38 (12 to 76) 80 (53 to 94) 

TO 65 (37 to 86) 78 (51 to 91) 49 (17 to 85) 

OO 52 (28 to 78) 49 (10 to 86) 49 (8 to 86) 

Pseudo 24 (13 to 48) 17 (6 to 63) 15 (6 to 66) 

 

 

 

In addition to these ratings, we obtained three Latent Semantic Analysis (LSA) scores (Landauer 

& Dumais, 1997) for each item using the database located at http://lsa.colorado.edu using the 

term-to-term scores for the General Reading up to first Year College topic space. One score 

represented the semantic relationship between the first constituent and the compound (e.g., honey 

and honeycomb), the second represented the relationship between the second constituent and the 

compound (e.g., comb and honeycomb) and the third score represented the relationship between 

the two constituents (e.g., honey and comb). LSA scores were available for all of the 

constituents, and for 156 of the compounds. The descriptive statistics for the three LSA scores 

are provided in Table 2. 

 The Pearson correlations among the ratings and LSA measures are provided in Table 3. 

 

Table 2: Mean and range (i.e., minimum to maximum values) for LSA scores 

 

Compound Type C1 and Compound C2 and Compound C1 and C2 

TT .21 (-.06 to .95) .18 (-.05 to .92) .24 (.01 to .74) 

OT .15 (-.05 to .82) .28 (.01 to .74) .17 (0 to .57) 

TO .26 (.01 to .74) .11 (-.07 to .40) .14 (-.02 to .35) 

OO .09 (-.03 to .49) .07 (-.05 to .31) .34 (-.01 to .44) 

Pseudo .06 (-.06 to .32) .07 (-.06 to .24) .10 (-.02 to .52) 
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Table 3: Pearson correlations between ratings and LSA scores 

 

 Predictability 

Rating 

Retention 

Rating C1 

Retention 

Rating C2 

LSA: C1 

and 

Compound 

LSA: C2 

and 

Compound 
Retention Rating C1 0.85     

Retention Rating C2 0.83 0.50    

LSA: C1 and 

Compound 

0.35 0.27 0.28   

LSA: C2 and 

Compound 

0.39 0.41 0.27 0.31  

LSA: C1 and C2 0.24 0.05 0.39 0.31 0.23 

 

 

2.2. Do LSA scores predict semantic transparency ratings? 

 

If meaning retention ratings directly reflect strength of association between the constituent and 

the compound then the ratings for the first constituent should be affected by the LSA values for 

the compound and the first constituent (e.g., house - houseboat) but not by the other LSA 

measures. Likewise, ratings for the second constituent should be affected only by the LSA for 

the compound and the second constituent (e.g., boat - houseboat). 

 The ratings, which were originally expressed as a percentage, were converted to a 

proportion by dividing by 100 for the regression analysis. The data were analyzed using 

fractional response regression because the predicted variable (rating) could take on values 

between 0 and 1. For each rating, we fit a separate model using the three LSA values as predictor 

variables and rating as the dependent variable (i.e., the to-be-predicted variable). 

 All three LSA values were predictive of the ratings for the first constituent. Ratings 

increased as the values of LSA for the compound and first constituent increased (b = 0.41, SE = 

.12, z = 3.50, p < .0001) and as the values of LSA for the first and second constituent increased 

(b = 0.25, SE = .13, z = 2.02, p = .04). As the values of LSA for the compound and second 

constituent increased, however, meaning retention ratings of the first constituent decreased 

(b = -0.31, SE = .12, z = -2.57, p = .01); the more associated the second constituent and 

compound were to each other (as indicated by the C2-compound LSA score), the less transparent 

the first constituent appeared to be to the participants when they made their judgments. The 

finding that the meaning retention ratings for the first constituent was predicted by all three LSA 

scores (i.e., C1-compound, C1-C2, and C2-compound), indicates that the meaning retention 

rating for the first constituent did not purely reflect the degree of association between the 

compound (e.g., blueberry) and the first constituent (e.g., blue).  

 In contrast, the meaning retention ratings for the second constituent were predicted only 

by the LSA score between the second constituent and the compound (b = .43, SE = .09, z = 4.82, 
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p < .0001) and not by the C1-compound scores nor by the C1-C2 LSA scores. This result 

indicates that the ratings for the second constituent were primarily affected by the degree of 

association between the compound (e.g., blueberry) and the head category (e.g., berry).  

 The predictability ratings from Part 2 (i.e., how much the meaning of the compound 

could be predicted by the constituents) were predicted by the LSA for the compound and the first 

constituent (b = 0.15, SE = .07, z = 2.02, p = .04) and by the LSA for the first constituent and the 

second constituent (b = 0.27, SE = .09, z = 2.81, p = .005). The ratings increased as the 

association between the compound and the first constituent increased and as the association 

between the two constituents increased. The association between the compound and the second 

constituent did not affect judgments of the compound meaning’s predictability. 

 In sum, the LSA measures were predictive of the human judgments of meaning retention 

and predictability. However, with the exception of the ratings for the second constituent, the 

relation was not one-to-one. That is, the semantic transparency rating for the first constituent was 

not a direct function of the similarity between the constituent and the compound (as measured by 

LSA). Instead, the other LSA measures also played a role. This suggests that the meaning 

retention ratings for the first constituent do not uniquely reflect the association between the first 

constituent and the compound but, rather, are influenced by the association between the second 

constituent and the compound and by the association between the first constituent and the second 

constituent. In terms of the predictability rating, this rating is influenced by the similarity of the 

two constituents to each other and by the similarity of the first constituent to the compound, but 

not by the similarity of the second constituent and the compound. These results are especially 

important given that, in the literature, LSA measures have been used as a means of determining 

whether a constituent is semantically transparent or opaque. 

 

2.3. How well do ratings and LSA predict linguistic classification? 

 

In this section we examine how well the LSA scores and rating data can predict the four types of 

compounds (TT, TO, OT, and OO) and pseudo-compounds, as well as whether they can 

discriminate fully opaque compounds (e.g., hogwash and buttercup) from pseudo-compounds 

(e.g., carpet and kitten). That is, given the LSA scores and/or the three ratings, what percentage 

of items can we correctly classify as TT, TO, OT, OO, and pseudo-compound? To answer this 

question, we used canonical discriminant analysis, which is a statistical technique related to 

analysis of variance and regression. This analysis finds sets of linear functions of the predictor 

variables (e.g., LSA scores or ratings) that best predict the differences among the various groups 

(e.g., the four types of compounds). We used the functions produced by the analysis to classify 

the items into categories and examined how well the predicted categories matched the original 

categories. 

 In our first set of analyses we focused only on compounds and compared the success of a 

model based on the three ratings with a model based on the three LSA values. The percentage of 

TT, TO, OT, and OO compounds that were correctly classified were, in order, 84.8%, 66.0%, 

69.6%, and 59.5% when the predictability ratings and the two meaning retention ratings were 

used. However, when the three LSA scores were used, the percentage of TT, TO, OT, and OO 

compounds that were correctly classified was much lower, 46.0%, 47.6%, 45.4%, and 51.6%. 
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The full set of classifications (i.e., the correct and incorrect classifications) are provided in Table 

4 for the classifications based on the ratings and in Table 5 for the classifications based on the 

LSA scores.  
 

Table 4: Classification of items into compound types based on discriminant dimensions derived 

from ratings (% based on row) 

 Predicted Category 

Actual Category TT OT TO OO 

TT 84.75 5.08 5.08 5.08 

OT 19.57 69.57 0 10.87 

TO 30.19 0 66.04 3.77 

OO 9.52 11.90 19.05 59.52 

 

 

Table 5: Classification of items into compound types based on discriminant dimensions derived 

from LSA (% based on row) 

 Predicted Category 

Actual Category TT OT TO OO 

TT 46.00 14.00 28.00 12.00 

OT 27.27 45.45 9.09 18.18 

TO 30.95 4.76 47.62 16.67 

OO 25.81 3.23 19.35 51.61 

 

 

 

In our second set of analyses we included pseudo-compounds along with the set of compounds to 

determine how well the model could predict the various item types. When ratings were used to 

classify the items, the percentage of pseudo-compounds, TT, TO, OT, and OO compounds that 

were correctly classified was 93.9%, 84.75%, 64.2%, 69.6%, and 40.5% (see Table 6 for the full 

set of classifications). Classification was best for pseudo-compounds and TT compounds. 
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Table 6: Classification of items based on discriminant dimensions derived from ratings (% based 

on row) 

 Predicted Category 

Actual Category TT OT TO OO Pseudo 

TT 84.75 5.08 5.08 5.08 0 

OT 19.57 69.57 0 10.87 0 

TO 30.19 0 64.15 5.66 0 

OO 9.52 11.90 19.05 40.48 19.05 

Pseudo 0 2.04 2.04 2.04 93.88 

 

 

 

When the three LSA measures were used, the percentage of pseudo-compounds, TT, TO, OT, 

and OO compounds that were correctly classified was 81.2%, 40.0%, 42.8%, 45.45%, and 0.0% 

(see Table 7 for the full set of classifications). When using LSA scores, classification was 

accurate only for the pseudo-compounds. One of the most striking findings is that when pseudo-

compounds were included, no items were classified as OO compounds when the discriminant 

function was based on LSA scores. 

 

Table 7: Classification of items based on discriminant dimensions derived from LSA (% based 

on row) 

 Predicted Category 

Actual Category TT OT TO OO Pseudo 

TT 40.00 10.00 26.00 0 24.00 

OT 18.18 45.45 3.03 0 33.33 

TO 23.81 4.76 42.86 0 28.57 

OO 19.35 3.23 16.13 0 61.29 

Pseudo 12.50 0 6.25 0 81.25 

 

 

 

Taken together, these results indicate that ratings are much better able to classify items than are 

the LSA values. Indeed, the success rate for functions based on the LSA measures is less than 

50% for most categories types. Although classification based on the three ratings were more 
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successful, the inclusion of pseudo-compounds reduces the ability of functions based on those 

ratings to distinguish the various compound types; instead, the function discriminates the most 

transparent compounds (the TT) from the pseudo-compounds and is only moderately successful 

at classifying the partially opaque and fully opaque compounds.  

 In the third set of analyses, we focused on the OO and pseudo-compounds to determine 

whether the ratings and the LSA scores could discriminate between these two types of items. 

Both items consist, orthographically, of two words. These words function as morphemes only for 

OO compounds (e.g., buttercup has a bi-morphemic structure) but not for the pseudo-compounds 

(e.g., kitten has a monomorphemic structure). Although a function based on the ratings was able 

to correctly classify the two types of words, 85.7% and 95.9% for the OO and pseudo-

compounds, a function based on the LSA measures was not, 25.8% correct for the OO 

compounds vs. 85.4% for the pseudo-compounds. There was a large bias toward classifying 

items as pseudo-compounds when using the LSA measures. In sum, the rating data was able to 

discriminate the two item types whereas the LSA was not. This suggests that the meaning 

retention ratings were sensitive to the presence/absence of morphological structure whereas the 

LSA scores were not.  

 

2.4. Using ratings and LSA to predict typing latencies before and after the morpheme boundary 

 

The analyses reported in the previous sections indicate that ratings of semantic transparency and 

LSA scores are related to each other, but are not synonymous. In this section, we examine how 

well these two measures predict behavioural data. In particular, we examine whether they predict 

typing times for compound words. During a typing task, participants type a word on a computer 

keyboard as the computer records the time required to type each letter. The data from this task 

can then be analyzed to see whether typing time differs at key points within a word. We will 

focus on the time required to type the letters before and after the morpheme boundary (e.g., the 

letters p and b in cupboard). 

 Previous research (Gagné & Spalding 2014d; Libben, Weber & Miwa 2012; Libben & 

Weber 2014) found that the time to type the letter after the morpheme boundary was longer than 

the time to type the letter before the morpheme boundary. In addition, semantic transparency 

affected the size of the elevation at the boundary. Libben and Weber (2014) found that the 

increase at the boundary was smaller for opaque-opaque (OO) compounds than for transparent-

transparent (TT) and opaque-transparent (OT) compounds. The increase at the boundary for OO 

and transparent-opaque (TO) compounds was equivalent. Gagné & Spalding (2014a) also found 

that the increase at the morpheme boundary was affected by semantic transparency and, in 

addition, that production of compounds with transparent second constituents (i.e., for TT and OT 

compounds) was affected by whether the preceding prime was semantically related to the first 

constituent of the compound.  

 For the current project, we use typing data collected by Gagné and Spalding (in press). 

The dataset consisted of the typing times for 200 compounds and 50 pseudo-compounds from 

140 native speakers of English, which was a total of 11462 trials for which the word had been 

correctly typed without revisions (e.g., without deletions).  
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 In Gagné and Spalding (in press), semantic transparency was measured using a 

dichotomous classification (transparent vs. opaque) of semantic transparency and the participant 

ratings of semantic transparency. One set of analyses focused on the morpheme boundary and 

used linear mixed effects regressions (Rabe-Hesketh & Skrondal, 2012) using semantic 

transparency of each constituent and letter position (end of C1 vs. start of C2) as predictor 

variables for latencies of the letter before and at the morpheme boundary and items and 

participants as random factors. One model was fit using the dichotomous classification and a 

second model was fit using the participant ratings. Both models indicated that the size of the 

boundary effect was influenced by the semantic transparency of the first constituent but was not 

strongly affected by the second constituent. The increase in typing at the boundary was larger 

when the first constituent was transparent (or had high transparency ratings) than when it was 

opaque (or had lower transparency ratings). The analyses with the ratings indicated that the 

influence of the first constituent’s transparency was only seen during the production of the first 

constituent (i.e., at the last letter of the first constituent, such as the w in snowball); typing 

latencies were faster at this position when semantic transparency ratings for the first constituent 

were higher than when they were lower. Transparency did not influence the time required to type 

the first letter of the second constituent (e.g., the b in snowball). 

 For the current project, we examined whether semantic transparency as measured by LSA 

scores produced similar effects to the measures reported in Gagné and Spalding (in press). In our 

analysis, position (end of C1 vs. start of C2), the LSA score for the first constituent and the 

compound, and the LSA for the second constituent and the compound were entered as predictor 

variables for typing latency. All models included items and participants as random factors. These 

three variables interacted (x2 = 5.68, p = .02). The nature of this interaction is shown in Figure 1.  

 

Figure 1: Interaction between C1-compound LSA and C2-compound LSA by position 
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Due to the interaction, we subsequently conducted separate analyses for the two positions to 

examine the influence of the two LSA variables. For the end of C1 position, the two LSA scores 

interacted (z = 2.18, p = .03). As can be seen in Figure 1, the influence of the LSA score for the 

second constituent and the compound was larger when LSA for the first constituent and the 

compound (LSA C1-compound) was higher than when LSA C1-compound was lower. Typing 

latencies at the end of the first constituent were fastest when the LSA C1-compound was higher 

and LSA C2-compound was lower. An alternate way to describe the interaction is that when the 

second constituent and the compound were highly associated with each other and the first 

constituent and the compound were highly associated with each other, then typing latencies at 

the end of the first constituent were slower than when the second constituent and compound were 

not strongly associated. 

 However, at the start of the second constituent, neither variable influenced typing times. 

Thus, as was the case for the dichotomous classification and participant ratings of semantic 

transparency, the LSA scores only affected the processing of the final letter of the first 

constituent but had no influence on the first letter of the second constituent. However, unlike the 

other two measures of semantic transparency, the LSA score involving the second constituent 

influenced ease of processing. 

 

2.5. Using ratings and LSA to predict typing latencies at all letter positions 

 

Gagné and Spalding (in press) found that typing time became faster across the word. That is, the 

typing of each letter became faster towards the end of the word. However, this speedup was 

slower for compound words than for monomorphemic words. In addition, analyses with the 

dichotomous measure of semantic transparency (e.g., transparent vs. opaque) indicated that the 

speedup across letter position was slower when the first constituent was transparent than when it 

was opaque. In other words, transparent compounds seemed to impair the normal speedup across 

the word. Transparency of the second constituent did not affect the speedup in typing latencies 

across letter positions. 

 In terms of the ratings, there was a two-way interaction between letter position (e.g., first 

letter, second letter, … , last letter) and the rating for the first constituent, z = 4.79, p < 0001; 

consistent with what was found for the dichotomous measure of semantic transparency, 

increased semantic transparency between the first constituent and the compound slowed down 

the speedup in the typing latencies across the word. The speedup in typing latencies across letter 

position was unaffected by transparency ratings for the second constituent, z = 1.10, p = .27.  

 For the current investigation, we examined whether the LSA scores show the same 

pattern as the dichotomous measure of semantic transparency. As was the case for the analysis 

with the ratings, we included an interaction term for letter position and each of the two measures 

of semantic transparency (i.e., one for the first constituent and one for the second constituent). 

The analyses revealed an interaction between letter position and the LSA scores for the first 

constituent and the compound, z = -3.40, p = .001). However, the nature of the interaction was 

the opposite to what had been found for the dichotomous measure and the ratings. The slope 

across letter position became steeper as the value of LSA increased; that is, increased LSA scores 

(i.e., increased similarity between the first constituent and the compound) were associated with 
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an increased rate of speedup across the word. The speedup in typing latencies across letter 

position was unaffected by LSA scores for the second constituent and the compound, z = 1.05, p 

= .29. 

 In sum, the LSA scores, although predictive of the speedup in typing latencies across the 

word, did not behave as the linguistic classification and rating measures of semantic 

transparency. Higher LSA scores aided the output of the letters across the word, whereas higher 

values for the other two measures of semantic transparency hindered the output across the word. 

This difference in terms of how the measures impact typing latencies suggests that LSA scores 

are not measuring the same theoretical construct as are the linguistic classification and the human 

ratings.  

 

 

3. Conclusions 
 

Semantic transparency has played a central role in theories of complex word processing and 

there have been several ways of measuring semantic transparency. Our analyses indicate that 

linguistic classification, human ratings, and LSA scores, although related to each other, do not 

reflect the same underlying constructs. Interestingly, the relation among the measures depended 

on morphological structure — that is, on whether the constituent is in the first or second (i.e., the 

head) position. Only the C2-compound LSA scores predicted the semantic transparency ratings 

for the second constituent, whereas C1-compound, C2-compound, and C1-C2 LSA scores 

predicted semantic transparency ratings for the first constituent. 

 In terms of the question of whether ratings or LSA scores can be used to re-capture the 

linguistic classifications (i.e., the dichotomous classification of opaque vs. transparent), neither 

measure appears to be well-suited for this task. The LSA scores in particular were unable to 

successfully classify the items. The meaning retention ratings were more successful, especially 

for classifying the fully transparent compounds, but still performed poorly for items that had 

opaque constituents. 

 Furthermore, only the human ratings were able to distinguish the OO compounds from 

the pseudo-compounds (i.e., items that have two embedded morphemes but actually lack a 

compound structure). The LSA measure could not accurately distinguish these two compound 

types. This aspect of our results indicates that people are sensitive to morphological structure, in 

a way that the LSA measures do not capture.  

 The various measures also differ in terms of how they account for behavioural measures. 

We demonstrate that, at least in the case of a typing task, ratings and LSA scores provide 

different perspectives into the question of how semantic transparency affects ease of processing. 

For example, only LSA scores, and not the ratings or linguistic classification, influenced typing 

times for the second constituent. As another example, even though LSA scores and the ratings 

affected the rate of speed-up across the typing of a word, their effects were in the opposite 

direction. Increased semantic transparency as measured by LSA scores between the first 

constituent and compound was associated with a faster speed-up, whereas increased semantic 

transparency as measured by either the linguistic classification or by the meaning retention 

ratings were associated with a slower speed-up. Clearly, the two sets of measures (LSA and 
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human judgments) are not measuring the same aspect of semantic transparency. The implication 

of this is that researchers must use caution when comparing research results from studies that use 

different measures of semantic transparency. Measures of semantic transparency are simply not 

interchangeable, and general conclusions about semantic transparency are not possible without 

proper caveats with respect to the measures of semantic transparency used in the research. It 

remains to be seen whether other methods of distributional semantics which take into 

consideration morphological structure (such as Marelli & Baroni, 2015) will be more successful 

than LSA. 

 Taken together, the analyses indicate that the various measures of semantic transparency 

are not directly interchangeable. That is, there is not a strict one-to-one mapping among the 

linguistic classification, the ratings, and the LSA scores. More importantly, semantic 

transparency of a constituent does not solely reflect similarity between the compound and the 

constituent, as is typically assumed. Instead, semantic transparency of a constituent, especially 

the first constituent, is affected by information about the other constituent. Our analyses indicate 

that semantic transparency is multi-faceted; it appears that no single measure (e.g., LSA or 

Ratings) fully captures this theoretical construct.   

 These results have direct theoretical implications in terms of evaluating previous 

psycholinguistic work and in terms of future explorations of semantic transparency. In particular, 

the results show that studies that use different measures of semantic transparency are not directly 

comparable. Furthermore, not all measures are equally predictive of the typing data. This is 

particularly important to keep in mind before concluding that semantic transparency does not 

exert an influence. Another implication is that a compound’s semantic transparency is not a 

simple function of the similarity between the constituents and the compound, which suggests that 

transparency cannot be easily represented in terms of the presence or absence of links between a 

constituent representation and a compound representation in the Mental Lexicon.  

 Furthermore, although this research focused on psycholinguistic processing, our findings 

have direct implications for linguistic structure because they provide insight into the role of the 

constituents. For example, much linguistic work has been done concerning the structure of multi-

morphemic words (e.g., see Lieber & Štekauer 2009; Scalise & Vogel 2005). One key issue in 

this work has been the role of morphology and part of this question centers around the role of 

semantic transparency (see Section 1.2). Indeed, semantic transparency is central to the issue of 

compositionality (Dressler 2005). The concept of semantic transparency and morphemic 

structure is also directly tied to theoretical issues concerning lexical semantics and, in particular, 

whether (and if so, how) semantic properties of the constituents are related to the whole 

compound (e.g., Lieber 2004, 2009; for a discussion of this issue see Gagné & Spalding 2015). 

Our data suggest that the two constituents (of a bi-morphemic compound) do not equally 

contribute to determining the transparency of the entire compound. Furthermore, our data 

suggest that semantic transparency is not a direct reflection of the semantic overlap between a 

constituent and the whole word, and that the semantic transparencies of the constituents are not 

independent of each other. In a broader sense, our data are consistent with Libben’s (2005) 

suggestion that semantic transparency is not a property of the words and constituents, but rather 

can only be understood in terms of how people process multi-morphemic words; instead, it is a 
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psycholinguistic effect. If so, then this would suggest the linguistic treatments of semantic 

transparency also need to consider the psycholinguistic aspects of this issue. 
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